11 17
1 15 15 11 3a
19 19 49 19 19 18

26 Rafe McBeth, PhD

1 19 19 31 19 65 19 19 49 31 31 19 19 19 19 19 45
3b
19 19 19 1 1 1 1 2d
79 Rafe McBeth photo 2f
4c

Assistant Professor of Clinical Radiation Oncology

18

74 Department: Radiation Oncology

11 13
7
1 1 5
1 18
e
25

Contact Information

c

92 3400 Civic Center Boulevard
Philadelphia, PA 19104 49

13
5 e
1e

Publications

70

Pubmed Link

b
9 e 9 12
1b

Education

d
    1d
  • 2e BS (Physics) 55
    Colorado State University, 2010
  • 1d
  • 51 BS (Minor: Mathematics, Biomedical Engineering) 55
    Colorado State University, 2010
  • 1d
  • 38 MS (Radiation Physics) 55
    Colorado State University, 2012
  • 1d
  • 39 PhD (Radiation Physics) 55
    Colorado State University, 2017
  • 1a
b
b
1 5
1 1 1 2b

Description of Research Expertise

7f

Computational methods in radiation oncology including artificial intelligence, Monte Carlo simulation, and automation.

1 2b

Description of Clinical Expertise

50

Implementation of artificial intelligence in clinical radiation oncology

1 1 1 1f

Selected Publications

5
    5
  • 9f Hai Siong Tan, Kwancheng Wang, Rafe Mcbeth : Uncertainty-Error correlations in Evidential Deep Learning models for biomedical segmentation 73 International Conference on Technologies and Applications of Artificial Intelligence Dec 2025
  • 5
  • e7 Satvik Tripathi, Dana Alkhulaifat, Florence X Doo, Pranav Rajpurkar, Rafe McBeth, Dania Daye, Tessa S Cook : Development, Evaluation, and Assessment of Large Language Models (DEAL) Checklist: A Technical Report 26 NEJM AI May 2025
  • 5
  • 103 Riqiang Gao, Mamadou Diallo, Han Liu, Anthony Magliari, Jonathan Sackett, Wilko Verbakel, Sandra Meyers, Rafe Mcbeth, Masoud Zarepisheh, Simon Arberet, Martin Kraus, Florin C Ghesu, Ali Kamen : Automating High Quality RT Planning at Scale 24 arXiv Jan 2025
  • 5
  • 6d Hai Siong Tan, Kuancheng Wang, Rafe McBeth : Evidential Physics-Informed Neural Networks 24 arxiv Jan 2025
  • 5
  • 10 D. Wang a S.H. Lee 10 N. Yegya-Raman 11 S.J. Feigenberg a G.D. Kao e A.L. Largent c C. Friedes d M. Iocolano b R. McBeth 9 L. Duan 7 B. Li 8 Y. Fan 98 Y. Xiao : Interpretable Machine Learning Models for Severe Esophagitis Prediction in LA-NSCLC Patients Treated with Chemoradiation Therapy 3c ASTRO Annual meeting 2023 October 2024
  • 5
  • b3 Daniel A. Alexander, Rafe McBeth : Enhancing Safety in Clinical AI Auto-Segmentation: Utilizing an Open-Source Model for Quality Assurance and Error Reduction 38 AAPM Annual meeting 2024 July 2024
  • 5
  • ca Brook Byrd, Daniel Alexander, William Ross Green, Steven Philbrook, Rafe McBeth : Utilizing a Vision-Language Pre-Training (VLP) Model for Rapid APBI Breast Target Auto-Segmentation 38 AAPM Annual Meeting 2024 July 2024
  • 5
  • be Daniel Alexander, Steven Philbrook, William Ross Green, Rafe McBeth : Evaluation of a Commercial Autosegmentation System for HN Oars: A Large US Institutional Experience 33 AAPM Annual Meeting July 2024
  • 5
  • a3 Julia Pakela, Rafe McBeth, Daniel Alexander, Wei Zou, Alireza Kassaee : Lung Tumor Motion Characterization for Proton Therapy Decision Support 33 AAPM Annual Meeting July 2024
  • 5
  • cd Joseph Shields, Steven Philbrook, Rafe McBeth : Developing an Esapi-Based Autoplanning Method for Volume-Modulated Arc Therapy for Accelerated Partial Breast Irradiation on the Halcyon 38 AAPM Annual Meeting 2024 July 2024
  • 6
1 1 19 1b
11 15 11 15 25 11 11 11 18
9 13